SAMPLE STUDY MATERIAL

Instrumentation Engineering

Postal Correspondence Course

GATE & PSUs

Analog Electronics

2

CONTENT

1.	DIODE APPLICATION	03-29
2.	OPERATIONAL AMPLIFIER	30-46
3.	TRANSISTOR BIASING AND STABILIZATION	47-60
4.	BJT AT LOW FREQUENCY	61-73
5.	BJT AT HIGH FREQUENCY	74-93
6.	FET AMPLIFIER	94-101
7.	OSCILLATOR	102-112
8.	FEEDBACK AMPLIFIER	113-123
9.	POWER AMPLIFIER	124-131
10.	MULTI VIBRATORS AND WAVE SHAPING CIRCUITS	132-138
11.	ANALOG ELECTRONICS GATE Practices Set	139-156
12.	ANALOG ELECTRONICS IES Objective	157-225

<u>CHAPTER-1</u> DIODE APPLICATION

1. Rectifier: A diode rectifier (alternating to unidirectional converter) forms an essential building block of the dc power supplies required to electronic equipment.

Note: Ideal value r = 0, F = 1 (AC component = 0)

2. Crest Factor:
$$C = \frac{\text{Peak value}}{\text{RMS value}}$$

3. Ripple Voltage: Ripple voltage is defined as deviation of output voltage from it's DC value

Output of rectifier \Rightarrow Pulsating DC

DC value = V_{dc}

RMS value = V_{ms}

4. PIV (Peak Inverse Voltage)

It is maximum voltage applied to diode in reverse bias condition and decide voltage handling capacity of diode circuit.

Note: PIV should be low.

5. Transformer utilization factor: It shows the degree of utilization of the transformer in rectifier circuit.

It must be very high and decide cost of circuit

Output Rectifier

$$V = V_{DC} + V_{AC}$$

$$V_{rms} = \sqrt{(V_{DC})^2 + (V_{AC_{rms}})^2}$$

$$\Rightarrow V_{AC_{rms}} = \sqrt{V_{rms}^2 - V_{DC}^2}$$

Example: Let $V = 4 + 2 \sin \omega t$

2

•
$$V_{\rm rms} = \sqrt{4^2 + \left(\frac{2}{\sqrt{2}}\right)^2} = \sqrt{16 + 2} = \sqrt{18}$$

• **Ripple Factor** (*r*) =
$$\frac{V_{AC_{ms}}}{V_{dc}} = \frac{\frac{2}{\sqrt{2}}}{4} = \frac{1}{2\sqrt{2}} = 0.35$$

• Form Factor

$$F = \frac{V_{\rm rms}}{V_{\rm DC}} = \frac{\sqrt{18}}{4} = 1.06$$

Rectifier

- 1. Half wave rectifier
- 2. Full wave rectifier
- (*a*) Centre taped rectifier

(b) Bridge rectifier

4

• Half Wave Rectifier

The half wave rectifier utilizes alternate half cycles of the input signal.

3. Form Factor

$$\mathbf{F} = \frac{\mathbf{V}_{\text{rms}}}{\mathbf{V}_{\text{DC}}} = \frac{\frac{\mathbf{V}_{m}}{2}}{\frac{\mathbf{V}_{m}}{\pi}} = \frac{\pi}{2} = 1.58$$

4. Ripple Factor

$$r = \sqrt{F^2 - 1} = \sqrt{\left(\frac{\pi}{2}\right)^2 - 1} = 1.21$$

5. Crest Factor:

$$C = \frac{\text{Peak value}}{\text{RMS value}} = \frac{V_m}{\frac{V_m}{2}} = 2$$

6. Rectifier Efficiency:

9. Ripple Frequency: Source frequency

Transfer curve of H.W.R. (Diode is assumed ideal) \Rightarrow

Thevenin equivalent of half wave rectifier

• d.c. Saturation of transformer secondary

Precision Half wave rectifier :

10. Full Wave Rectifier

In the full wave rectifier, rectification takes place for both the half cycle of input signal.

1. Centre Tapped F.W.R. (Using Ideal Diodes)

Note: Ripple frequency = 2 (source frequency)

(iii) Form Factor

$$F = \frac{V_{rms}}{V_{DC}} = \frac{\frac{V_m}{\sqrt{2}}}{\frac{2V_m}{\pi}} = \frac{\pi}{2\sqrt{2}} = 1.11$$

(iv) Ripple Factor

$$r = \sqrt{F^2 - 1} = \sqrt{\left(\frac{\pi}{2\sqrt{2}}\right)^2 - 1} = 0.48$$

(v) Crest Factor

$$C = \frac{V_m}{\frac{V_m}{\sqrt{2}}} = \sqrt{2}$$

(vi) Rectifier Efficiency

Note: In FWR case utilization of transformer takes place in both +ve and -ve half hence TUF increases.

(*viii*) **PIV** = $2V_m$; Higher PIV is disadvantages to circuit as it effect diode operation.

Thevenin equivalent of full wave rectifier

$$I_{th} = \frac{V_{th}}{R_L + R_{th}}$$

$$I_L = \frac{V_m \sin \check{S}t - V_r}{R_S + R_F + R_L} \cong \frac{V_m \sin \check{S}t}{R_S + R_F + R_L} = I_m^{'} \sin \check{S}t \quad \because I_m^{'} = \frac{V_m}{R_S + R_F + R_L}$$

$$I_{dc} = \frac{1}{2f} \int_{o}^{f} I_L d(\check{S}t) = \frac{2I_m^{'}}{f} = \frac{2V_m/f}{R_S + R_F + R_L}$$

9

$$V_{th} = \frac{2V_m}{f} \qquad \boxed{R_{Th} = R_S + R_F}$$

2. Bridge Type FWR (Using Ideal Diode):

- (*iv*) Ripple factor: r = 0.48
- (v) **Rectification efficiency** = 81.06%

Note: As waveform is some for centre tapped and bridge type FWR hence above (v) quantities are same.

(*vi*) **TUF:** TUF = 0.812 **Note:** Transformer is proper utilized.

(vii) **PIV** = V_m

Key Points:

Analog Elecctronics-IN

11

(*i*) Both full wave rectifiers are better than the half wave rectifier in so far as voltage ripple factor, rectification efficiency, TUF and crest factor are concerned.

(*ii*) TUF of bridge type FWR is better than centre tapped FWR therefore transforms required in the centre tapper FWR is bulky.

- (iii) PIV of diodes in bridge rectifier is half of that of the diodes used in centre tapped FWR.
- (iv) Overall, a bridge rectifier using four diodes is more economical.

Filter Circuits:

 \Rightarrow As the output of the rectifier circuit is pulsating DC containing AC and DC component filter circuits are used to suppress the AC component.

 \Rightarrow It reduces ripple factor to negligible value.

 \Rightarrow Important components of the filters are capacitor and inductor.

Types of Filter Circuit:

Here, ripple voltage is approximated as triangular waveform and on this basis d.c. and r.m.s value is calculate.

 \Rightarrow A capacitor C across load R_L offers direct short circuit to AC component, these are therefore not allowed to reach the load. However dc gets stored in the form of energy in C and this allows the maintence of almost constant dc output voltage across the load.

 \Rightarrow C-filter is suitable for load having low current (High Load Resistance)

$$\Rightarrow \text{HWR with C-filter} \qquad \text{Ripple factor } r = \frac{1}{2\sqrt{3} f \text{CR}_1}$$

 \Rightarrow FWR with C-filter

Ripple factor $r = \frac{1}{4\sqrt{3} f CR_{T}}$

 \Rightarrow An inductor L in series with load R_L reduces the ac component or ac ripples because L in series with

 R_L offers high impedance to ac component but very low resistance to dc.

 \Rightarrow L-filter is suitable for loads requiring high load current (low value of $R_{\rm L}$).

Note: In both C-filter and L-filter, time constant should be large for better waveform *i.e.*,

$$\tau = \frac{L}{R_{\rm L}} = CR_{\rm L}$$
 should be high.

(*ii*) Ripple factor (*r*) = $\frac{2}{3\sqrt{2}} \frac{1}{\sqrt{1 + \left(\frac{X_L}{R_L}\right)^2}}$

where, $X_L = \omega L$ for HWR

$$= Z \omega L$$
 for FWR

(iii) L section or LC Filter:

 \Rightarrow An LC filter consists of inductor L in series with the load and capacitor C across the load. This filter possesses the advantage of both L filter and C filter.

$$\Rightarrow \text{Ripple factor } r = \frac{\sqrt{2}}{3} \frac{X_{c}}{X_{L}}$$

- V_i is output of the filter circuit.
- Zener diode should be RB and breakdown.
- $I_{ZK} = K \text{ NEE current}$ = The minimum current flowing through the zener diode when zener breakdown has just occurred.
- I_{Z_m} = The maximum zener current.
- P_{Zm} = Maximum power dissipated in zener diode = $V_Z I_{Zm}$

=0

• For satisfactory operation of circuit.

$$\begin{split} \mathbf{I} &\geq \mathbf{I}_{ZK} + \mathbf{I}_{L} \\ &\frac{\mathbf{V}_{i} - \mathbf{V}_{o}}{\mathbf{R}} \geq \mathbf{I}_{ZK} + \mathbf{I}_{L} \end{split}$$

Example: Find P_z Given $V_z = 15$ V

Solution: Voltage across reverse bias zener diode = $\frac{5}{150+5} \times 50 = 1.612$ V

= 20 V

This voltage is less than V_z hence zener is off and $V_z = 0$ hence $P_z = 0$

Example. If in the above problem $S\Omega$ resistor is replaced by 100Ω resistor. Now find P_z ? **Solution:** Voltage across RB zener diode

SAMP

$$V_o = \frac{100}{150 + 100} \times 50$$

Hence, diode will go into breakdown mod

Hence,
$$(V_o = V_Z = 15 V)$$

$$I = \frac{50 - 15}{150} = 0.23 A$$
$$I_{L} = \frac{15}{100} = .15 A$$
$$I_{Z} = I - I_{L} = 0.23 - 0.15 = 0.08 A$$

$$P_Z = V_Z I_Z = 15 \times 0.08$$
 watts
= 1.2 watts

 \Rightarrow These are used to select the part of waveform that lie above or below some reference level.

(i) Positive Clipper:

• Clipping above reference level.

(ii) Negative Clipper:

• Clipping below reference level

 \Rightarrow On the basis of position of diode w.r.t load

(Shunt +ve clipper)

Range of V_i	D	V _o
$V_i < V_R$	OFF	V _i
$V_i \ge V_R$	ON	V _R

(ii) Series Clipper

Series +ve clipper

Range of V_i	D	V _o
$V_i < V_R$	ON	\mathbf{V}_i
$V_i \ge V_R$	OFF	V_{R}

• Transfer Curve

77 Final Selections in Engineering Services 2014.

Rank	Roll	Name	Branch
1	171298	SAHIL GARG	EE
3	131400	FIRDAUS KHAN	ECE
6	088542	SUNEET KUMAR TOMAR	ECE
8	024248	DEEPANSHU SINGH	EE
10	207735	VASU HANDA	ECE
22	005386	RAN SINGH GODARA	ECE
22	032483	PAWAN KUMAR	EE
29	070313	SAURABH GOYAL	EE
31	214577	PRAMOD RAWANI	EE
33	075338	DIPTI RANJAN TRIPATHY	ECE
35	003853	SHANKAR GANESH K	ECE
35	091781	KOUSHIK PAN	EE

Postal Course (GATE & PSUs) © 2015 ENGINEERS INSTITUTE OF INDIA®. All Rights Reserved 28-B/7, Jia Sarai, Near IIT, Hauz Khas, New Delhi-110016. Ph. 011-26514888. www.engineersinstitute.com

Analog Elecctronics-IN F			stal Correspondence Course	17		
36	052187	ANOOP A	ECE			
37	008233	ARPIT SHUKLA	ECE			
38	106114	MANISH GUPTA	EE			
41	018349	VINAY GUPTA	ECE			
44	098058	LEENA P MARKOSE	EE			
45	029174	NAVNEET KUMAR KANWAT	EE			
9 Rank under AIR 100 in GATE 2015 (Rank						
6,8,19,28,41,56,76,91,98)						
and many more						
To Buy Postal Correspondence Package call at 0-9990657855						

