**Target-GATE 2017 **

**About GATE Exam GATE 2017 Eligibilty & Pattern GATE 2017 Syllabus & Analysis GATE Reference Books GATE Previous Papers GATE 2017 Schedule GATE Detail Solution GATE Cutoff Details**

# PSU’s

About PSU´s PSU´s Eligibilty PSU´s Pattern PSU´s Syllabus PSU´s Exam Schedule PSU´s Previous Papers PSU´s Reference Books GATE Cutoff for PSU's##### GATE Exam Syllabus For Electronics & Communications Engineering - ECE

**GATE Exam Syllabus for Electronics Engineering - ECE **and we also provide details about the topics which you have to studied by the aspirants for **Gate Electronics Engineering - ECE **exams. Candidates may note that the Syllabus for **GATE Electronics Engineering - ECE ** will be arranged topic wise and students have to studied and prepare according to the given Pattern. All the Details are mention about the Syllabus for the **GATE Exam Electronics Engineering Papers - ECE **.

1. ELECTRONICS AND COMMUNICATION ENGINEERING – EC |

Engineering Mathematics |

Linear Algebra: Vector space, basis, linear dependence and independence, matrix algebra, eigen values and eigen vectors, rank, solution of linear equations –existence and uniquenessCalculus: Mean value theorems, theorems of integral calculus, evaluation of definite and improper integrals, partial derivatives, maxima and minima, multiple integrals, line, surface and volume integrals, Taylor series.Differential equations: First order equations (linear and nonlinear), higher order linear differential equations, Cauchy's and Euler's equations, methods of solution using variation of parameters, complementary function and particular integral, partial differential equations, variable separable method, initial and boundary value problemsVector AnalysisVectors in plane and space, vector operations, gradient, divergence and curl, Gauss's, Green's and Stoke's theoremsComplex variables: Analytic functions, Cauchy's integral theorem, Cauchy's integral formula; Taylor's and Laurent's series, residue theorem.Probability and Statistics: Mean, median, mode and standard deviation; combinatorial probability, probability distribution functions -binomial, Poisson, exponential and normal; Joint and conditional probability; Correlation and regression analysis, convergence criteria.Numerical Methods: Solutions of non-linear algebraic equations, single and multi-step methods for differential equations. |

GENERAL APTITUDE(GA): |

Verbal Ability: English grammar, sentence completion, verbal analogies, word groups, instructions, critical reasoning and verbal deduction. |

Electronics and Communication Engineering |

Electronic Devices: Energy bands in intrinsic and extrinsic silicon; Carrier transport: diffusion current, drift current, mobility and resistivity; Generation and recombination of carriers; Poisson and continuity equations; P-N junction, Zener diode, BJT, MOS capacitor, MOSFET, LED, photo diode and solar cell; Integrated circuit fabrication process: oxidation, diffusion, ion implantation, photolithography and twin-tub CMOS processAnalog Circuits: Small signal equivalent circuits of diodes, BJTs and MOSFETs; Simple diode circuits: clipping, clamping and rectifiers; Single-stage BJT and MOSFET amplifiers: biasing, bias stability, mid-frequency small signal analysis andfrequency response; BJT and MOSFET amplifiers: multi-stage, differential, feedback, power and operational; Simple op-amp circuits; Active filters; Sinusoidal oscillators: criterion for oscillation, single-transistor and op-amp configurations; Function generators, wave-shaping circuits and 555 timers; Voltage
reference circuits; Power supplies: ripple removal and regulation Number systems; Combinatorial circuits: Boolean algebra, minimization of functions using Boolean identities and Karnaugh map, logic gates and their static CMOS implementations, arithmetic circuits, code converters, multiplexers, decoders and PLAs; Sequentialcircuits:latches and flip-flops,counters,shift-registers and finite state machines; Data converters: sample and hold circuits, ADCs and DACs; Semiconductor memories: ROM, SRAM, DRAM; 8-bit microprocessor (8085): architecture, programming, memory and I/O interfacingDigital circuits: Control Systems: Basic control system components; Feedback principle; Transfer function; Block diagram representation; Signal flow graph; Transient and steady
-state analysis of LTI systems; Frequency response; Routh-Hurwitz and Nyquist stability criteria; Bode and root-locus plots; Lag, lead and lag-lead compensation; State variable model and solution of state equation of LTI systems.Communications: Random processes: autocorrelation and power spectral density, properties of white noise, filtering of random signals through LTI systems; Analog communications: amplitude modulation and demodulation, angle modulation and demodulation, spectra of AM and FM, superheterodyne receivers, circuits for analog communications; Information theory: entropy, mutual information and channel capacity theorem; Digital communications: PCM, DPCM, digital modulation schemes, amplitude, phase and frequency shift keying (ASK, PSK, FSK), QAM, MAP and ML decoding, matched filter receiver, calculation of bandwidth, SNR and BER for digital modulation; Fundamentals of error correction, Hamming codes; Timing and frequency synchronization, inter-
symbol interference and its mitigation; Basics of TDMA, FDMA and CDMAElectromagnetics: Electrostatics; Maxwell’s equations: differential and integral forms and their interpretation, boundary conditions, wave equation, Poynting vector; Plane waves and properties: reflection and refraction, polarization, phase and group velocity, propagation through various media, skin depth; Transmission line
s: equations, characteristic impedance, impedance matching, impedance transformation, S-
parameters, Smith chart; Waveguides: modes, boundary conditions, cut-off frequencies, dispersion relations; Antennas: antenna types, radiation pattern, gain and directi
vity, return loss, antenna arrays; Basics of radar; Light propagation in optical fibers.
To know more about |

Registration Form |

# NEXT BATCH

GATE 2017 Regular Course 16th Feb. & 15th March 2016 |

GATE 2017 Weekend Course 20th Feb. & 19th March. 2016 |

Crash Course (IES 2016) 16th Feb. 2016 |